Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255977

ABSTRACT

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Ursolic Acid , Sciatic Nerve , Dietary Supplements , Muscle Fibers, Skeletal
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569453

ABSTRACT

Skeletal muscle (SkM) lipid composition plays an essential role in physiological muscle maintenance and exercise performance. Thyroid hormones (THs) regulate muscle formation and fuel energy utilization by modulating carbohydrates and lipid and protein metabolism. The best-known effects of THs in SkM include the promotion of mitochondrial biogenesis, the fiber-type switch from oxidative to glycolytic fibers, and enhanced angiogenesis. To assess the role of THs on the lipidic composition of SkM fibers, we performed lipidomic analyses of SkM cells and tissues, glucose tolerance experiments, and exercise performance tests. Our data demonstrated that TH treatment induces remodeling of the lipid profile and changes the proportion of fatty acids in SkM. In brief, THs significantly reduced the ratio of stearic/oleic acid in the muscle similar to what is induced by physical activity. The increased proportion of unsaturated fatty acids was linked to an improvement in insulin sensitivity and endurance exercise. These findings point to THs as critical endocrine factors affecting exercise performance and indicate that homeostatic maintenance of TH signals, by improving cell permeability and receptor stability at the cell membrane, is crucial for muscle physiology.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Thyroid Hormones/metabolism , Exercise , Fatty Acids/metabolism
4.
Nat Commun ; 14(1): 1244, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871014

ABSTRACT

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Subject(s)
Iodide Peroxidase , Tumor Suppressor Protein p53 , DNA Damage , Exercise , Genetic Therapy
5.
Pharmacol Res ; 189: 106685, 2023 03.
Article in English | MEDLINE | ID: mdl-36773711

ABSTRACT

The iodothyronine deiodinases constitute a family of three selenoenzymes regulating the intracellular metabolism of Thyroid Hormones (THs, T4 and T3) and impacting on several physiological processes, including energy metabolism, development and cell differentiation. The type 1, 2 and 3 deiodinases (D1, D2, and D3), are sensitive, rate-limiting components within the TH axis, and rapidly control TH action in physiological conditions or disease. Notably, several human pathologies are characterized by deiodinases deregulation (e.g., inflammation, osteoporosis, metabolic syndrome, muscle wasting and cancer). Consequently, these enzymes are golden targets for the identification and development of pharmacological compounds endowed with modulatory activities. However, until now, the portfolio of inhibitors for deiodinases is limited and the few active compounds lack selectivity. Here, we describe the cephalosporin Cefuroxime as a novel D2 specific inhibitor. In both in vivo and in vitro settings, Cefuroxime acts as a selective inhibitor of D2 activity, without altering the enzymatic activity of D1 and D3. By inhibiting TH activation in target tissues, Cefuroxime alters the sensitivity of the hypothalamus-pituitary axis and interferes with the central regulation of THs levels, and is thus eligible as a potential new regulator of hyperthyroid pathologies, which affect thousands of patients worldwide.


Subject(s)
Cefuroxime , Iodide Peroxidase , Humans , Iodide Peroxidase/metabolism , Drug Repositioning , Thyroid Hormones/metabolism , Cell Differentiation
6.
Metabolites ; 12(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35629909

ABSTRACT

Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRß) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRßKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs-THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.

8.
Cell Rep ; 38(8): 110409, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196498

ABSTRACT

Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass.


Subject(s)
Glutamine , Intellectual Disability , Alanine Transaminase , Glutamine/metabolism , Humans , Intellectual Disability/genetics , Thyroid Hormones , Transaminases
9.
Cancer Lett ; 532: 215581, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35134514

ABSTRACT

Prostate Cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the fifth leading cause of death worldwide. The majority of PCas are androgen-sensitive, with a significant up-regulation of Androgen Receptor (AR) that causes a stimulatory effect on growth and progression of cancer cells. For this reason, the first-line therapy for PCa is androgen ablation, even if it ultimately fails due to the onset of hormone-refractory state, in which the malignant cells do not sense the androgen signal anymore. Besides androgens, a growing number of evidence suggests that Thyroid Hormones (THs) mediate tumor-promoting effects in a variety of human cancers, as Epithelial-to-Mesenchymal Transition (EMT), invasion and metastasis and also stimulation of angiogenesis and tumor metabolism. Moreover, epidemiological studies demonstrated an increased risk for PCa in patients with lower levels of Thyreotropin (TSH). Here, we investigated if intracellular TH metabolism affects Benign Prostatic Hyperplasia (BPH) and PCa formation and progression. We found that the intracellular TH metabolism is a crucial determinant of PCa behavior. We observed that a dynamic stage-specific expression of the THs modulating enzymes, the deiodinases, is required for the progression of BPH to PCa malignancy. By acting simultaneously on epithelial cancer cells and fibroblasts, THs exert a proliferative and pro-inflammatory effect cooperating with androgens. These findings suggest that androgens and THs may interplay and mediate a coordinate effect on human PCa formation and progression. In light of our results, future perspective could be to explore the potential benefits of THs intracellular modulators aimed to counteract PCa progression.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Androgens/metabolism , Carcinogenesis , Cell Line, Tumor , Humans , Inflammation , Male , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Thyroid Hormones , Tumor Microenvironment
10.
Cancers (Basel) ; 13(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205977

ABSTRACT

Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH-VEGF-A-HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.

11.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281225

ABSTRACT

Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the ß3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.


Subject(s)
Muscle Cells/physiology , Muscle, Skeletal/physiology , Thyroid Hormones/physiology , Animals , Cell Differentiation , Integrin beta3/physiology , Iodide Peroxidase/physiology , Mice , Muscle, Skeletal/cytology , Iodothyronine Deiodinase Type II
12.
Antioxidants (Basel) ; 9(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403305

ABSTRACT

Liver diseases affect millions of people worldwide. In most of the cases, severe hepatic dysfunction and liver cancer stem from mild and common clinical signs including hepatic steatosis, insulin resistance, liver inflammation, and oxidative stress, all together referred to as Nonalcoholic Fatty Liver Disease (NAFLD). Nutraceuticals endowed with antioxidant activity have been shown to reduce NAFLD risk factors and exert hepatoprotective effects. Here, we test the protective effect exerted on liver by the antioxidant Taurisolo, a nutraceutical formulation produced by grape pomace and enriched in Resveratrol and Polyphenols. We analyze the effect of Taurisolo on liver cells by profiling the metabolome of in vitro cultured hepatic HuH7 cells and of C57BL-6J mice fed a High Fat Diet and treated with the nutraceutical. Both in vitro and in vivo, we provide evidence that Taurisolo reduces risk factor markers associated with NAFLD. Taurisolo stimulates glucose uptake and reduces hepatic cholesterol and serum triglycerides. Furthermore, we give new insights into the mechanism of action of Taurisolo. The nutraceutical increases mitochondrial activity and promotes respiration and ATP production, fostering catabolic reactions like fatty acid ß-oxidation and amino acid catabolism. On the contrary, Taurisolo reduces anabolic reactions like biosynthesis of cholesterol, bile acids, and plasma membrane lipids.

13.
Cancers (Basel) ; 12(3)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197405

ABSTRACT

Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.

14.
Thyroid ; 30(7): 1066-1078, 2020 07.
Article in English | MEDLINE | ID: mdl-32111151

ABSTRACT

Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.


Subject(s)
Cell Differentiation/genetics , Epidermis/metabolism , Iodide Peroxidase/metabolism , Keratinocytes/metabolism , Animals , Homeostasis/physiology , Iodide Peroxidase/genetics , Keratinocytes/cytology , Mice , Mice, Knockout , Thyroid Hormones/metabolism
16.
Nat Commun ; 10(1): 5410, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776338

ABSTRACT

Epithelial tumor progression often involves epithelial-mesenchymal transition (EMT). We report that increased intracellular levels of thyroid hormone (TH) promote the EMT and malignant evolution of squamous cell carcinoma (SCC) cells. TH induces the EMT by transcriptionally up-regulating ZEB-1, mesenchymal genes and metalloproteases and suppresses E-cadherin expression. Accordingly, in human SCC, elevated D2 (the T3-producing enzyme) correlates with tumor grade and is associated with an increased risk of postsurgical relapse and shorter disease-free survival. These data provide the first in vivo demonstration that TH and its activating enzyme, D2, play an effective role not only in the EMT but also in the entire neoplastic cascade starting from tumor formation up to metastatic transformation, and supports the concept that TH is an EMT promoter. Our studies indicate that tumor progression relies on precise T3 availability, suggesting that pharmacological inactivation of D2 and TH signaling may suppress the metastatic proclivity of SCC.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Thyroid Hormones/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mice, Transgenic , Middle Aged , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/genetics , Iodothyronine Deiodinase Type II
17.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118529, 2019 12.
Article in English | MEDLINE | ID: mdl-31412274

ABSTRACT

Many cell stressors block protein translation, inducing formation of cytoplasmic aggregates. These aggregates, named stress granules (SGs), are composed by translationally stalled ribonucleoproteins and their assembly strongly contributes to cell survival. Composition and dynamics of SGs are thus important starting points for identifying critical factors of the stress response. In the present study we link components of the H/ACA snoRNP complexes, highly concentrated in the nucleoli and the Cajal bodies, to SG composition. H/ACA snoRNPs are composed by a core of four highly conserved proteins -dyskerin, Nhp2, Nop10 and Gar1- and are involved in several fundamental processes, including ribosome biogenesis, RNA pseudouridylation, stabilization of small nucleolar RNAs and telomere maintenance. By taking advantage of cells overexpressing a dyskerin splice variant undergoing a dynamic intracellular trafficking, we were able to show that H/ACA snoRNP components can participate in SG formation, this way contributing to the stress response and perhaps transducing signals from the nucleus to the cytoplasm. Collectively, our results show for the first time that H/ACA snoRNP proteins can have additional non-nuclear functions, either independently or interacting with each other, thus further strengthening the close relationship linking nucleolus to SG composition.


Subject(s)
Cell Cycle Proteins/metabolism , Cytoplasmic Granules/metabolism , Nuclear Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , HeLa Cells , Humans , Nuclear Proteins/genetics , Nuclear Proteins/isolation & purification , Tumor Cells, Cultured
18.
Redox Biol ; 24: 101228, 2019 06.
Article in English | MEDLINE | ID: mdl-31153038

ABSTRACT

Thyroid hormone (TH) is a key metabolic regulator that acts by coordinating short- and long-term energy needs. Accordingly, significant metabolic changes are observed depending on thyroid status. Although it is established that hyperthyroidism augments basal energy consumption, thus resulting in an enhanced metabolic state, the net effects on cellular respiration and generation of reactive oxygen species (ROS) remain unclear. To elucidate the effects of augmented TH signal in muscle cells, we generated a doxycycline-inducible cell line in which the expression of the TH-activating enzyme, type 2 deiodinase (D2), is reversibly turned on by the "Tet-ON" system. Interestingly, increased intracellular TH caused a net shift from oxidative phosphorylation to glycolysis and a consequent increase in the extracellular acidification rate. As a result, mitochondrial ROS production, and both the basal and doxorubicin-induced production of cellular ROS were reduced. Importantly, the expression of a set of antioxidant genes was up-regulated, and, among them, the mitochondrial scavenger Sod2 was specifically induced at transcriptional level by D2-mediated TH activation. Finally, we observed that attenuation of oxidative stress and increased levels of SOD2 are key elements of the differentiating cascade triggered by TH and D2, thereby establishing that D2 is essential in coordinating metabolic reprogramming of myocytes during myogenic differentiation. In conclusion, our findings indicate that TH plays a key role in oxidative stress dynamics by regulating ROS generation. Our novel finding that TH and its intracellular metabolism act as mitochondrial detoxifying agents sheds new light on metabolic processes relevant to muscle physiology.


Subject(s)
Iodide Peroxidase/metabolism , Mitochondria/metabolism , Muscle Development , Oxidation-Reduction , Oxidative Stress , Thyroid Hormones/metabolism , Animals , Antioxidants/metabolism , Glycolysis , Male , Mice , Muscle Development/genetics , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...